Poset matching—a distributive analog of independent matching

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poset representations of distributive semilattices

We prove that for every distributive 〈∨, 0〉-semilattice S, there are a meet-semilattice P with zero and a map μ : P × P → S such that μ(x, z) ≤ μ(x, y)∨μ(y, z) and x ≤ y implies that μ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (P1) μ(v, u) = 0 implies that u = v, for all u ≤ v in P . (P2) For all u ≤ v in P and all a,b ∈ S, if μ(v, u) ≤ a ∨ b, then there are a pos...

متن کامل

N ov 2 00 7 POSET REPRESENTATIONS OF DISTRIBUTIVE

We prove that for every distributive ∨, 0-semilattice S, there are a meet-semilattice P with zero and a map µ : P × P → S such that µ(x, z) ≤ µ(x, y) ∨ µ(y, z) and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (P1) µ(v, u) = 0 implies that u = v, for all u ≤ v in P. (P2) For all u ≤ v in P and all a, b ∈ S, if µ(v, u) ≤ a ∨ b, then there are a pos...

متن کامل

CD-independent subsets in distributive lattices

The notion of CD-independence is introduced as follows. A subset X of a lattice L with 0 is called CD-independent if for any x, y ∈ X , either x ≤ y or y ≤ x or x ∧ y = 0. In other words, if any two elements of X are either Comparable or Disjoint. Maximal CD-independent subsets are called CD-bases. The main result says that any two CD-bases of a finite distributive lattice L have the same numbe...

متن کامل

CDW-independent subsets in distributive lattices

A subset X of a lattice L with 0 is called CDW-independent if (1) it is CDindependent, i.e., for any x, y ∈ X , either x ≤ y or y ≤ x or x ∧ y = 0 and (2) it is weakly independent, i.e., for any n ∈ N and x, y1, . . . , yn ∈ X the inequalityx ≤ y1∨· · ·∨yn implies x ≤ yi for some i. A maximal CDW-independent subset is called a CDW-basis. With combinatorial examples and motivations in the backgr...

متن کامل

3 N ov 2 00 7 POSET REPRESENTATIONS OF DISTRIBUTIVE SEMILATTICES

We prove that for every distributive ∨, 0-semilattice S, there are a meet-semilattice P with zero and a map µ : P × P → S such that µ(x, z) ≤ µ(x, y) ∨ µ(y, z) and x ≤ y implies that µ(x, y) = 0, for all x, y, z ∈ P , together with the following conditions: (P1) µ(v, u) = 0 implies that u = v, for all u ≤ v in P. (P2) For all u ≤ v in P and all a, b ∈ S, if µ(v, u) ≤ a ∨ b, then there are a pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1993

ISSN: 0012-365X

DOI: 10.1016/0012-365x(93)90380-c